Modelling the clumping-induced polarimetric variability of hot star winds
نویسندگان
چکیده
Context. Clumping in the winds of massive stars may significantly reduce empirical mass-loss rates, and which in turn may have a large impact on our understanding of massive star evolution. Aims. Here, we investigate wind-clumping through the linear polarization induced by light scattering off the clumps. Methods. Through the use of an analytic wind clumping model, we predict the time evolution of the linear polarimetry over a large parameter space. We concentrate on the Luminous Blue Variables, which display the greatest amount of polarimetric variability and for which we recently conducted a spectropolarimetric survey. Results. Our model results indicate that the observed level of polarimetric variability can be reproduced for two regimes of parameter space: one of a small number of massive, optically-thick clumps; and one of a very large number of low-mass clumps. Conclusions. Although a systematic time-resolved monitoring campaign is required to distinguish between the two scenarios, we currently favour the latter, given the short timescale of the observed polarization variability. As the polarization is predicted to scale linearly with mass-loss rate, we anticipate that all hot stars with very large mass-loss rates should display polarimetric variability. This is consistent with recent findings that intrinsic polarization is more common in stars with strong Hα emission.
منابع مشابه
Advances in mass-loss predictions
We present the results of Monte Carlo mass-loss predictions for massive stars covering a wide range of stellar parameters. We critically test our predictions against a range of observed massloss rates – in light of the recent discussions on wind clumping. We also present a model to compute the clumping-induced polarimetric variability of hot stars and we compare this with observations of Lumino...
متن کاملDirect Spectroscopic Observations of Clumping in O - Star Winds
We report the detection and monitoring of transient substructures in the radiation-driven winds of five massive, hot stars in different evolutionary stages. Clumping in the winds of these stars shows up as variable, narrow subpeaks superposed on their wide, wind-broadened (optical) emission lines. Similar patterns of emission-line profile variations are detected in the Of stars ζ Puppis and HD9...
متن کاملA Clumping Independent Diagnostic of Stellar Mass-loss Rates: Rapid Clump Destruction in Adiabatic Colliding Winds
Clumping in hot star winds can significantly affect estimates of mass-loss rates, the inferred evolution of the star and the environmental impact of the wind. A hydrodynamical simulation of a colliding winds binary (CWB) with clumpy winds reveals that the clumps are rapidly destroyed after passing through the confining shocks of the wind-wind collision region (WCR) for reasonable parameters of ...
متن کاملRecombination Lines and Free-Free Continua Formed in Asymptotic Ionized Winds: Analytic solution for the radiative transfer
Key words radiative transfer – stars: emission line, Be – stars: winds, outflows – stars: Wolf-Rayet – circumstellar matter In dense hot star winds, the infrared and radio continua are dominated by free-free opacity and recombination emission line spectra. In the case of a spherically symmetric outflow that is isothermal and expanding at constant radial speed, the radiative transfer for the con...
متن کاملMass loss summary – a personal perspective
For the occasion of the official retirement of Henny Lamers, a meeting was held to celebrate Henny’s contribution to mass loss from stars and stellar clusters. Stellar mass loss is crucial for understanding the life and death of massive stars, as well as their environments. Henny has made important contributions to many aspects of our understanding of hot-star winds. Here, the most dominant asp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008